3.16 \(\int (a+a \cos (c+d x))^2 (A+B \cos (c+d x)) \sec ^3(c+d x) \, dx\)

Optimal. Leaf size=88 \[ \frac {a^2 (3 A+2 B) \tan (c+d x)}{2 d}+\frac {a^2 (3 A+4 B) \tanh ^{-1}(\sin (c+d x))}{2 d}+\frac {A \tan (c+d x) \sec (c+d x) \left (a^2 \cos (c+d x)+a^2\right )}{2 d}+a^2 B x \]

[Out]

a^2*B*x+1/2*a^2*(3*A+4*B)*arctanh(sin(d*x+c))/d+1/2*a^2*(3*A+2*B)*tan(d*x+c)/d+1/2*A*(a^2+a^2*cos(d*x+c))*sec(
d*x+c)*tan(d*x+c)/d

________________________________________________________________________________________

Rubi [A]  time = 0.22, antiderivative size = 88, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 31, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.161, Rules used = {2975, 2968, 3021, 2735, 3770} \[ \frac {a^2 (3 A+2 B) \tan (c+d x)}{2 d}+\frac {a^2 (3 A+4 B) \tanh ^{-1}(\sin (c+d x))}{2 d}+\frac {A \tan (c+d x) \sec (c+d x) \left (a^2 \cos (c+d x)+a^2\right )}{2 d}+a^2 B x \]

Antiderivative was successfully verified.

[In]

Int[(a + a*Cos[c + d*x])^2*(A + B*Cos[c + d*x])*Sec[c + d*x]^3,x]

[Out]

a^2*B*x + (a^2*(3*A + 4*B)*ArcTanh[Sin[c + d*x]])/(2*d) + (a^2*(3*A + 2*B)*Tan[c + d*x])/(2*d) + (A*(a^2 + a^2
*Cos[c + d*x])*Sec[c + d*x]*Tan[c + d*x])/(2*d)

Rule 2735

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(b*x)/d
, x] - Dist[(b*c - a*d)/d, Int[1/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d
, 0]

Rule 2968

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(
e_.) + (f_.)*(x_)]), x_Symbol] :> Int[(a + b*Sin[e + f*x])^m*(A*c + (B*c + A*d)*Sin[e + f*x] + B*d*Sin[e + f*x
]^2), x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]

Rule 2975

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> -Simp[(b^2*(B*c - A*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*(c + d*S
in[e + f*x])^(n + 1))/(d*f*(n + 1)*(b*c + a*d)), x] - Dist[b/(d*(n + 1)*(b*c + a*d)), Int[(a + b*Sin[e + f*x])
^(m - 1)*(c + d*Sin[e + f*x])^(n + 1)*Simp[a*A*d*(m - n - 2) - B*(a*c*(m - 1) + b*d*(n + 1)) - (A*b*d*(m + n +
 1) - B*(b*c*m - a*d*(n + 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d
, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 1/2] && LtQ[n, -1] && IntegerQ[2*m] && (IntegerQ[2*n]
 || EqQ[c, 0])

Rule 3021

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f
_.)*(x_)]^2), x_Symbol] :> -Simp[((A*b^2 - a*b*B + a^2*C)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1))/(b*f*(m +
 1)*(a^2 - b^2)), x] + Dist[1/(b*(m + 1)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[b*(a*A - b*B + a*
C)*(m + 1) - (A*b^2 - a*b*B + a^2*C + b*(A*b - a*B + b*C)*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, e,
 f, A, B, C}, x] && LtQ[m, -1] && NeQ[a^2 - b^2, 0]

Rule 3770

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps

\begin {align*} \int (a+a \cos (c+d x))^2 (A+B \cos (c+d x)) \sec ^3(c+d x) \, dx &=\frac {A \left (a^2+a^2 \cos (c+d x)\right ) \sec (c+d x) \tan (c+d x)}{2 d}+\frac {1}{2} \int (a+a \cos (c+d x)) (a (3 A+2 B)+2 a B \cos (c+d x)) \sec ^2(c+d x) \, dx\\ &=\frac {A \left (a^2+a^2 \cos (c+d x)\right ) \sec (c+d x) \tan (c+d x)}{2 d}+\frac {1}{2} \int \left (a^2 (3 A+2 B)+\left (2 a^2 B+a^2 (3 A+2 B)\right ) \cos (c+d x)+2 a^2 B \cos ^2(c+d x)\right ) \sec ^2(c+d x) \, dx\\ &=\frac {a^2 (3 A+2 B) \tan (c+d x)}{2 d}+\frac {A \left (a^2+a^2 \cos (c+d x)\right ) \sec (c+d x) \tan (c+d x)}{2 d}+\frac {1}{2} \int \left (a^2 (3 A+4 B)+2 a^2 B \cos (c+d x)\right ) \sec (c+d x) \, dx\\ &=a^2 B x+\frac {a^2 (3 A+2 B) \tan (c+d x)}{2 d}+\frac {A \left (a^2+a^2 \cos (c+d x)\right ) \sec (c+d x) \tan (c+d x)}{2 d}+\frac {1}{2} \left (a^2 (3 A+4 B)\right ) \int \sec (c+d x) \, dx\\ &=a^2 B x+\frac {a^2 (3 A+4 B) \tanh ^{-1}(\sin (c+d x))}{2 d}+\frac {a^2 (3 A+2 B) \tan (c+d x)}{2 d}+\frac {A \left (a^2+a^2 \cos (c+d x)\right ) \sec (c+d x) \tan (c+d x)}{2 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [B]  time = 1.36, size = 277, normalized size = 3.15 \[ \frac {1}{16} a^2 (\cos (c+d x)+1)^2 \sec ^4\left (\frac {1}{2} (c+d x)\right ) \left (\frac {4 (2 A+B) \sin \left (\frac {d x}{2}\right )}{d \left (\cos \left (\frac {c}{2}\right )-\sin \left (\frac {c}{2}\right )\right ) \left (\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right )}+\frac {4 (2 A+B) \sin \left (\frac {d x}{2}\right )}{d \left (\sin \left (\frac {c}{2}\right )+\cos \left (\frac {c}{2}\right )\right ) \left (\sin \left (\frac {1}{2} (c+d x)\right )+\cos \left (\frac {1}{2} (c+d x)\right )\right )}-\frac {2 (3 A+4 B) \log \left (\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right )}{d}+\frac {2 (3 A+4 B) \log \left (\sin \left (\frac {1}{2} (c+d x)\right )+\cos \left (\frac {1}{2} (c+d x)\right )\right )}{d}+\frac {A}{d \left (\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right )^2}-\frac {A}{d \left (\sin \left (\frac {1}{2} (c+d x)\right )+\cos \left (\frac {1}{2} (c+d x)\right )\right )^2}+4 B x\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[(a + a*Cos[c + d*x])^2*(A + B*Cos[c + d*x])*Sec[c + d*x]^3,x]

[Out]

(a^2*(1 + Cos[c + d*x])^2*Sec[(c + d*x)/2]^4*(4*B*x - (2*(3*A + 4*B)*Log[Cos[(c + d*x)/2] - Sin[(c + d*x)/2]])
/d + (2*(3*A + 4*B)*Log[Cos[(c + d*x)/2] + Sin[(c + d*x)/2]])/d + A/(d*(Cos[(c + d*x)/2] - Sin[(c + d*x)/2])^2
) + (4*(2*A + B)*Sin[(d*x)/2])/(d*(Cos[c/2] - Sin[c/2])*(Cos[(c + d*x)/2] - Sin[(c + d*x)/2])) - A/(d*(Cos[(c
+ d*x)/2] + Sin[(c + d*x)/2])^2) + (4*(2*A + B)*Sin[(d*x)/2])/(d*(Cos[c/2] + Sin[c/2])*(Cos[(c + d*x)/2] + Sin
[(c + d*x)/2]))))/16

________________________________________________________________________________________

fricas [A]  time = 0.85, size = 119, normalized size = 1.35 \[ \frac {4 \, B a^{2} d x \cos \left (d x + c\right )^{2} + {\left (3 \, A + 4 \, B\right )} a^{2} \cos \left (d x + c\right )^{2} \log \left (\sin \left (d x + c\right ) + 1\right ) - {\left (3 \, A + 4 \, B\right )} a^{2} \cos \left (d x + c\right )^{2} \log \left (-\sin \left (d x + c\right ) + 1\right ) + 2 \, {\left (2 \, {\left (2 \, A + B\right )} a^{2} \cos \left (d x + c\right ) + A a^{2}\right )} \sin \left (d x + c\right )}{4 \, d \cos \left (d x + c\right )^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^2*(A+B*cos(d*x+c))*sec(d*x+c)^3,x, algorithm="fricas")

[Out]

1/4*(4*B*a^2*d*x*cos(d*x + c)^2 + (3*A + 4*B)*a^2*cos(d*x + c)^2*log(sin(d*x + c) + 1) - (3*A + 4*B)*a^2*cos(d
*x + c)^2*log(-sin(d*x + c) + 1) + 2*(2*(2*A + B)*a^2*cos(d*x + c) + A*a^2)*sin(d*x + c))/(d*cos(d*x + c)^2)

________________________________________________________________________________________

giac [A]  time = 0.50, size = 154, normalized size = 1.75 \[ \frac {2 \, {\left (d x + c\right )} B a^{2} + {\left (3 \, A a^{2} + 4 \, B a^{2}\right )} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1 \right |}\right ) - {\left (3 \, A a^{2} + 4 \, B a^{2}\right )} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1 \right |}\right ) - \frac {2 \, {\left (3 \, A a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 2 \, B a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 5 \, A a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 2 \, B a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )}^{2}}}{2 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^2*(A+B*cos(d*x+c))*sec(d*x+c)^3,x, algorithm="giac")

[Out]

1/2*(2*(d*x + c)*B*a^2 + (3*A*a^2 + 4*B*a^2)*log(abs(tan(1/2*d*x + 1/2*c) + 1)) - (3*A*a^2 + 4*B*a^2)*log(abs(
tan(1/2*d*x + 1/2*c) - 1)) - 2*(3*A*a^2*tan(1/2*d*x + 1/2*c)^3 + 2*B*a^2*tan(1/2*d*x + 1/2*c)^3 - 5*A*a^2*tan(
1/2*d*x + 1/2*c) - 2*B*a^2*tan(1/2*d*x + 1/2*c))/(tan(1/2*d*x + 1/2*c)^2 - 1)^2)/d

________________________________________________________________________________________

maple [A]  time = 0.15, size = 113, normalized size = 1.28 \[ \frac {3 a^{2} A \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2 d}+a^{2} B x +\frac {B \,a^{2} c}{d}+\frac {2 a^{2} A \tan \left (d x +c \right )}{d}+\frac {2 B \,a^{2} \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{d}+\frac {a^{2} A \sec \left (d x +c \right ) \tan \left (d x +c \right )}{2 d}+\frac {B \,a^{2} \tan \left (d x +c \right )}{d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*cos(d*x+c))^2*(A+B*cos(d*x+c))*sec(d*x+c)^3,x)

[Out]

3/2/d*a^2*A*ln(sec(d*x+c)+tan(d*x+c))+a^2*B*x+1/d*B*a^2*c+2*a^2*A*tan(d*x+c)/d+2/d*B*a^2*ln(sec(d*x+c)+tan(d*x
+c))+1/2*a^2*A*sec(d*x+c)*tan(d*x+c)/d+1/d*B*a^2*tan(d*x+c)

________________________________________________________________________________________

maxima [A]  time = 0.54, size = 142, normalized size = 1.61 \[ \frac {4 \, {\left (d x + c\right )} B a^{2} - A a^{2} {\left (\frac {2 \, \sin \left (d x + c\right )}{\sin \left (d x + c\right )^{2} - 1} - \log \left (\sin \left (d x + c\right ) + 1\right ) + \log \left (\sin \left (d x + c\right ) - 1\right )\right )} + 2 \, A a^{2} {\left (\log \left (\sin \left (d x + c\right ) + 1\right ) - \log \left (\sin \left (d x + c\right ) - 1\right )\right )} + 4 \, B a^{2} {\left (\log \left (\sin \left (d x + c\right ) + 1\right ) - \log \left (\sin \left (d x + c\right ) - 1\right )\right )} + 8 \, A a^{2} \tan \left (d x + c\right ) + 4 \, B a^{2} \tan \left (d x + c\right )}{4 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^2*(A+B*cos(d*x+c))*sec(d*x+c)^3,x, algorithm="maxima")

[Out]

1/4*(4*(d*x + c)*B*a^2 - A*a^2*(2*sin(d*x + c)/(sin(d*x + c)^2 - 1) - log(sin(d*x + c) + 1) + log(sin(d*x + c)
 - 1)) + 2*A*a^2*(log(sin(d*x + c) + 1) - log(sin(d*x + c) - 1)) + 4*B*a^2*(log(sin(d*x + c) + 1) - log(sin(d*
x + c) - 1)) + 8*A*a^2*tan(d*x + c) + 4*B*a^2*tan(d*x + c))/d

________________________________________________________________________________________

mupad [B]  time = 0.30, size = 162, normalized size = 1.84 \[ \frac {3\,A\,a^2\,\mathrm {atanh}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )}{d}+\frac {2\,B\,a^2\,\mathrm {atan}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )}{d}+\frac {4\,B\,a^2\,\mathrm {atanh}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )}{d}+\frac {2\,A\,a^2\,\sin \left (c+d\,x\right )}{d\,\cos \left (c+d\,x\right )}+\frac {A\,a^2\,\sin \left (c+d\,x\right )}{2\,d\,{\cos \left (c+d\,x\right )}^2}+\frac {B\,a^2\,\sin \left (c+d\,x\right )}{d\,\cos \left (c+d\,x\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((A + B*cos(c + d*x))*(a + a*cos(c + d*x))^2)/cos(c + d*x)^3,x)

[Out]

(3*A*a^2*atanh(sin(c/2 + (d*x)/2)/cos(c/2 + (d*x)/2)))/d + (2*B*a^2*atan(sin(c/2 + (d*x)/2)/cos(c/2 + (d*x)/2)
))/d + (4*B*a^2*atanh(sin(c/2 + (d*x)/2)/cos(c/2 + (d*x)/2)))/d + (2*A*a^2*sin(c + d*x))/(d*cos(c + d*x)) + (A
*a^2*sin(c + d*x))/(2*d*cos(c + d*x)^2) + (B*a^2*sin(c + d*x))/(d*cos(c + d*x))

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ a^{2} \left (\int A \sec ^{3}{\left (c + d x \right )}\, dx + \int 2 A \cos {\left (c + d x \right )} \sec ^{3}{\left (c + d x \right )}\, dx + \int A \cos ^{2}{\left (c + d x \right )} \sec ^{3}{\left (c + d x \right )}\, dx + \int B \cos {\left (c + d x \right )} \sec ^{3}{\left (c + d x \right )}\, dx + \int 2 B \cos ^{2}{\left (c + d x \right )} \sec ^{3}{\left (c + d x \right )}\, dx + \int B \cos ^{3}{\left (c + d x \right )} \sec ^{3}{\left (c + d x \right )}\, dx\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))**2*(A+B*cos(d*x+c))*sec(d*x+c)**3,x)

[Out]

a**2*(Integral(A*sec(c + d*x)**3, x) + Integral(2*A*cos(c + d*x)*sec(c + d*x)**3, x) + Integral(A*cos(c + d*x)
**2*sec(c + d*x)**3, x) + Integral(B*cos(c + d*x)*sec(c + d*x)**3, x) + Integral(2*B*cos(c + d*x)**2*sec(c + d
*x)**3, x) + Integral(B*cos(c + d*x)**3*sec(c + d*x)**3, x))

________________________________________________________________________________________